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Course Rationale 

The rationale for this Sessional is to provide students with practical experience in 
understanding, analyzing, and applying digital signal processing (DSP) concepts. This lab 
complements theoretical coursework by enabling students to interact directly with DSP 
algorithms and systems using computational tools like MATLAB. By working on real-world 
signal processing problems, students develop the skills necessary to design and evaluate 
digital systems for applications in communication, control, and multimedia, bridging the gap 
between theory and practical implementation. 

Course Objectives:  

1. Provide hands-on experience with MATLAB to simulate and analyze digital signals 
and systems. 

2. Enable students to understand and implement key DSP operations such as 
convolution, correlation, and z-transforms. 

3. Develop proficiency in designing and evaluating FIR filters for practical applications. 

4. Enhance problem-solving skills by working on real-world DSP challenges in the 
frequency and time domains. 

5. Strengthen the understanding of analog-to-digital conversion and digital 
representation of signals. 

Course Learning Outcomes (CLOs)  

CLO 1 Understand DSP Fundamentals: Demonstrate an understanding of DSP 
concepts, signal representation, and MATLAB basics. 

CLO 2 Analyze Signals: Using mathematical and computational tools to analyze and 
interpret discrete-time signals in time and frequency domains. 

CLO 3 Apply DSP Techniques: Implement and manipulate signal processing 
techniques such as convolution, correlation, and z-transform in MATLAB. 

CLO 4 Design Digital Filters: Design and simulate FIR filters for signal processing 
applications and evaluate their performance. 

 

Course Outline 

Sl. 
No. 

Topic & Details Class 
Hours 

1 Introduction to MATLAB: Basics of MATLAB environment and 
initial programming setup 

2 

2 Continuous-Time and Discrete-Time Representation of Signals: 
Visualization and basic operations 

2 



3 Analog to Digital Conversion: Sampling, quantization, and coding 2 

4 Manipulation of Discrete-Time (DT) Signals: Shifting, scaling, and 
inversion 

2 

5 Convolution and Correlation of Discrete-Time Sequences: 
Understanding DSP fundamentals 

3 

6 z-Transform in MATLAB: Analysis and computation of z-domain 
representation 

3 

7 Frequency Domain Analysis of DT Signals: Fourier analysis and 
spectral representation 

3 

8 Design of Finite Impulse Response (FIR) Filter: Techniques and 
implementation in MATLAB 

4 

Total 
 

21 Hours 

 

Course Schedule 

Week Topic & Details Teaching-Learning 
Strategy 

Assessment 
Strategy 

CLO 
Mapping 

1 Introduction to MATLAB: 
Basics, interface navigation, and 
scripting 

Lecture, hands-on 
MATLAB exercises 

Lab 
performance, 
viva 

CLO 1 

2 Continuous Time and Discrete-
Time Representation of Signals: 
Visualizing signals in MATLAB 

Interactive 
demonstration, 
MATLAB 
implementation 

Practical 
evaluation, 
report 
submission 

CLO 1, 
CLO 2 

3 Analog to Digital Conversion: 
Sampling, quantization, and 
aliasing concepts 

Lecture, guided 
simulations 

Lab 
performance, 
viva 

CLO 1, 
CLO 3 

4 Manipulation of Discrete-Time 
(DT) Signals: Scaling, shifting, 
and reversing signals 

MATLAB coding 
tasks, collaborative 
learning 

Assessment of 
code accuracy, 
oral discussion 

CLO 2, 
CLO 3 

5 Convolution and Correlation of 
Discrete-Time Sequences: 
Mathematical and graphical 
interpretation 

Lecture, MATLAB 
examples 

Lab 
performance, 
troubleshooting 
challenges 

CLO 2 

6 z-Transform in MATLAB: 
Properties and applications in 
signal processing 

Concept-focused 
explanation, 
computational tasks 

Report 
evaluation, 
programming 
assignment 

CLO 2, 
CLO 3 



7 Frequency Domain Analysis of 
DT Signals: Fourier Transform 
and frequency spectrum analysis 

Simulation 
exercises, 
collaborative 
learning 

Assessment of 
understanding 
via 
assignments 

CLO 2, 
CLO 3 

8 Design of FIR Filters: 
Understanding filter 
specifications and implementing 
FIR filters in MATLAB 

Step-by-step guide, 
MATLAB filter 
design 

Filter design 
accuracy 
assessment, 
presentation of 
findings 

CLO 4 

9 Mid-Term Review and Practical 
Exam 

Hands-on problem-
solving, concept 
revision 

Mid-term lab 
exam 
evaluation 

CLO 1, 
CLO 2, 
CLO 3, 
CLO 4 

10 Advanced FIR Filter Design: 
Applying windowing techniques 
and optimizing filter 
performance 

Guided coding, 
collaborative group 
discussion 

Filter design 
accuracy, 
comparative 
analysis 

CLO 4 

11 Real-Time Signal Processing 
Applications Using MATLAB 

Case studies, 
practical simulations 

Application-
based project 
assessment 

CLO 3, 
CLO 4 

12 Practical Implementation of 
Signal Processing Techniques 

Collaborative lab 
activities 

Submission of 
practical 
outcomes 

CLO 3, 
CLO 4 

13 Troubleshooting and Debugging 
MATLAB Scripts for DSP 
Applications 

Problem-solving 
tasks, peer learning 

Debugging 
accuracy and 
efficiency 
evaluation 

CLO 3, 
CLO 4 

14 Final Project Work: End-to-end 
signal processing application 
development 

Independent work 
with mentor 
guidance 

Final project 
assessment 

CLO 4 

15 Final Project Review: Peer 
review, project evaluation, and 
report preparation 

Peer feedback, 
collaborative 
improvement 
suggestions 

Evaluation 
based on peer 
feedback and 
improvements 

CLO 4 

16 Final Lab Exam Hands-on practical 
exam 

Final lab exam 
performance 
evaluation 

CLO 1, 
CLO 2, 
CLO 3, 
CLO 4 

17 Final Presentation and Wrap-Up Student 
presentations, Q&A 
sessions 

Presentation 
clarity and 
understanding 
of concepts 

CLO 4 



Assessment Pattern 

• Continuous Assessment 
 

Bloom’s Category Tests 

Imitation 12 
Manipulation 8 

Precision 6 
Articulation 2 

Naturalization 2 
 

• Semester End Examination: (SEE): 
 

Bloom’s Category 
Marks (out of 30) 

Tests (20) Quiz (10) 

External Participation 
in Curricular/Co-
Curricular Activities 
(20) 

Imitation 06 06 Bloom’s Affective 
Domain: (Attitude or 
will) 

• Attendance: 10 
• Viva-Voca: 5 
• Report Submission: 5 

Manipulation 04 04 
Precision 06  

Articulation 02  
Naturalization 02  
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List of Experiments 
1. Introduction to MATLAB. 
2. Continuous time and Discrete-time representation of signals 
3. Analog to digital conversion 
4. Manipulation of Discrete-Time (DT) signals 
5. Convolution and correlation of Discrete-Time sequences 
6. z-Transform in Matlab 
7. Frequency domain analysis of DT signals 
8. Design of Finite Impulse Response (FIR) Filter 

  



Experiment No.: 01 

Experiment Name: Introduction to MATLAB. 

Objectives: 

 To familiarize with MATLAB and some basic commands of MATLAB. 
 To know about variable and variable types in MATLAB. 
 To know about Matrix manipulation in MATLAB. 
 To learn about plotting 2D graphs in MATLAB. 
 To become familiar with MATLAB script/editor. 
 To become familiar with conditional operators and loops in MATLAB. 
 To learn about debugging programs in MATLAB. 
 To know how to develop a user-defined function in MATLAB. 

 

Theory: 
 

MATLAB: MATLAB is a powerful tool used by engineers and scientists for numerical 
computation, data analysis, and algorithm development. Let’s embark on a journey to 
understand its capabilities and functionalities. 
 
1. Familiarization with MATLAB and Basic Commands: MATLAB, short for Matrix 

Laboratory, is a high-level language that operates primarily on matrices and arrays.  
To get started, some basic commands include: 

 

 clc - Clear the Command Window. 
 clear - Remove variables from the workspace. 
 help - Display help for MATLAB functions. 
 doc – Display detailed documentation for any MATLAB function 

 
2. Variables and Variable Types: In MATLAB, variables are created when you assign them 

a value. Variable types range from numeric arrays, characters, strings, tables, and structures, 
to cell arrays. By default, MATLAB stores numeric variables as double-precision floating-
point values. 
 

3. Naming Convention: In MATLAB, file name & variable names must start with Alphabet. 
A mix of letters, numbers & Underscore “_” can be used. No space is allowed. 
 

4. Matrix Manipulation: MATLAB excels at matrix manipulation. We can perform 
operations like addition, subtraction, multiplication, and division on matrices with ease. 
Functions like zeros, ones, and eye create matrices of zeros, ones, and identity matrices, 
respectively. 

 
4. Plotting 2D Graphs: Plotting is a visual way to represent data. The plot function is used 

to create 2D line plots.  
      For example, to plot the sine function, we should use: 
 

Code : x = 0:pi/100:2*pi; 
y = sin(x); 



plot(x, y); 
 

This would display a sine wave on the graph. 
 
5. MATLAB Script/Editor: The MATLAB Editor is where we write, debug, and run our 
MATLAB code. Scripts are files that contain code and are executed in sequence. We can create 
scripts by clicking the New Script button in the Home tab or using the edit function. 
 
6. Conditional Operators and Loops: Conditional operators (if, else, switch) and loops (for, 

while) control the flow of your program. 
For example, a simple for loop to print numbers from 1 to 5 would look like: 

 

Code: for i = 1:5 
    disp(i); 

end 
 

This will display numbers 1 through 5 in the Command Window. 
 
7. Debugging Programs: Debugging is crucial for finding and fixing errors. MATLAB 
provides an interactive environment for debugging, where we can set breakpoints, step through 
code, and inspect variables. The Editor highlights lines of code where errors occur, making it 
easier to diagnose problems. 
 
8. Developing User-Defined Functions: User-defined functions allow us to write reusable 
code blocks. A simple function to calculate the area of a circle might look like: 
 
Code: function area = calcArea(radius) 

    area = pi * radius^2; 
end 

 

We can call this function with a radius value to get the area. 
 
 

Conclusion: 
 

MATLAB, an integrated environment designed for complex numerical computations and 
advanced programming. We have explored the core features of MATLAB, encompassing basic 
commands, variable types, matrix operations, and 2D graphical plotting. Additionally, we have 
examined the functionalities of the MATLAB script/editor, the application of conditional 
operators and loops, the process of debugging programs, and the methodology for developing 
user-defined functions. Equipped with this foundational knowledge, participants are now 
prepared to employ MATLAB for diverse applications across various domains. The 
competencies developed are instrumental for tasks ranging from data analysis to algorithmic 
development, and scientific inquiry. As we conclude, it is encouraged to persistently engage 
with MATLAB to refine and expand one’s skill set. Continued practice will ensure proficiency 
and pave the way for innovative contributions to the field of MATLAB programming.  
 
 
 
 



 
 

Experiment No.: 02 

Experiment Name: Continuous-time and Discrete-time Representation of 
signals. 

Objectives: 

 To represent (plot) basic signals (sine, cosine, sinc, unit impulse, unit step, unit ramp, 
exponential signal) in MATLAB. 

 To generate noise signals in MATLAB. 
 

Required Apparatus: 

 MATLAB Software 
 

 
Theory: 

 

 Sine Wave: A sine wave is a smooth, periodic oscillation that is mathematically described 
by the equation, y = [A sin(2*pi*f*t)] 

 Where, 
A = the amplitude. 
f = the frequency in Hz. 
t = the continuous time variable. 

 
 Cosine Wave: A cosine wave is a smooth, periodic oscillation similar to a sine wave 

represented by the equation, y = [A cos(2*pi*f*t)] 
Where, 

A = the amplitude. 
f = the frequency in Hz. 
t = the continuous time variable. 
 

 Sinc Wave: The sinc wave is a function that describes a sine wave divided by its argument, 
commonly used in signal processing for its property of being the Fourier transform of a 
rectangular pulse. The equation represents the Sinc wave, y= [A sinc(2*pi*f*t)]. 
 

 Unit Impulse Signal: Unit Impulse Signal is a function that is zero for negative time and 
one for positive time. 
The equation for unit impulse signal: y = [zeros (1, abs(a)), ones (1,1), zeros (1, b)] 
It’s defined as: 
 
δ(n) = 

 

 Unit Step Signal: Unit Step Signal is a function that is zero everywhere except at zero, 
where it is infinitely high and has an integral of one.  

1,  for  n = 0; 
0,  for  n ≠ 0; 



The equation for unit impulse signal: y = [zeros (1, abs(a)),ones(1,1),ones(1,b)]; 
It’s defined as: 

 

 Unit Ramp Signal: Unit Ramp Signal is a function that increases linearly with time from 
zero starting at time zero. 
It’s defined as: 
 

 

 

 Exponential Signal:  Exponential Signal is a signal that changes over time according to an 
exponential function, typically representing growth or decay. 
It’s defined as: 
 

𝜘𝜘(𝑛𝑛) = 𝑎𝑎n          for all n; 
 

 Noise Signal: Noise signal is an unwanted modification that a signal may suffer during 
capture, storage, transmission, processing, or conversion. 
For this experiment uniformly distributed white noise rand & randn function have been 
used. 
 
 

Code:  
 

As Continuous Time Plot: 
 

 Sine Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 
y=sin(2*pi*F*t); 
plot(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(‘Sine Wave Continuous Plot (Student ID’); 
grid on; 
 

 

 Cosine Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 

1,  for  n ≥ 0; 
0,  for  n < 0; Ur (n)  = 

1,  for  n ≥ 0; 
0,  for  n < 0; U (n)  = 



y=cos(2*pi*F*t); 
plot(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(‘Cosine Wave Continuous Plot (Student ID’); 
grid on; 

 
 Sinc Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 
y=sinc(2*pi*F*t); 
plot(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(‘sinc Wave Continuous Plot (Student ID’); 
grid on; 
 
 

As Discrete Time Stem: 
 

 Sine Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 
y=sin(2*pi*F*t); 
stem(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(‘Sine Wave Discrete Plot (Student ID’); 
grid on; 

 
 

 Cosine Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 
y=cos(2*pi*F*t); 
stem(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(‘Cosine Wave Discrete Plot (Student ID’); 
grid on; 
 



 
 Sinc Wave: 
clc 
clear 
Fs=100 
T=1/Fs 
F=2 
d=2; t=-d:T:d 
y=sinc(2*pi*F*t); 
stem(t,y,'LineWidth',1); 
xlabel('Sample Position'); 
ylabel('Amplitude'); 
title(Sinc Wave Discrete Plot (Student ID’); 
grid on; 
 

 Unit Impulse Signal: 
clc 
clear 
a=-5 
b=10 
n=a:b 
y=[zeros(1,abs(a)),ones(1,1),zeros(1,b)]; 
stem(n,y,'LineWidth',1,'Color','b'); 
title('Unit Impulse Signal (Student ID)') 
xlabel('Sample position'); 
ylabel('Amplitude'); 
 

 Unit Step Signal: 
clc 
clear 
a=-5 
b=10 
n=a:b 
y=[zeros(1,abs(a)),ones(1,1),ones(1,b)]; 
stem(n,y,'LineWidth',1,'Color','b'); 
title('Unit Step Signal (Student ID)') 
xlabel('Sample position'); 
ylabel('Amplitude'); 
 
 

 Unit Ramp Signal: 
clc 
clear; 
n=0:10 
y=n 
stem(n,y,'LineWidth',1,'Color','b'); 
title('Unit Ramp Signal (Student ID)') 
xlabel('Sample position'); 
ylabel('Amplitude'); 



 
 

 Exponential Signal: 
clc 
clear 
n=0:100 
a1=0.9  
y1=a1.^n 
subplot(221) 
stem(n,y1,'b') 
title('Exponential sequence when 0<a<1') 
xlabel('Sample position (n)') 
ylabel('Amplitude') 
a2=1.1 
y2=a2.^n 
subplot(2,2,2) 
stem(n,y2,'b') 
title('Exponential sequence when a>1') 
xlabel('Sample position (n)') 
ylabel('Amplitude') 
a3=0.9 
y3=a3.^n 
subplot(223) 
stem(n,y3,'b') 
title('Exponential sequence when 1<a<0') 
xlabel('Sample position (n)') 
ylabel('Amplitude') 
a4=1.1 
y4=a4.^n 
subplot(2,2,4) 
stem(n,y4,'b') 
title('Exponential sequence when a<1') 
xlabel('Sample position (n)') 
ylabel('Amplitude') 
 

 
 Noise Signal Generation: 
clc 
clear 
Fs=1000                % sampling frequency 
Ts=1/Fs         % sampling period or time step 
n=0:Ts:1-Ts            % signal duration 
f1=9; f2=39; f3=25;    % Frequency of the three Sine Signals 
y1=10*sin(2*pi*f1*n) 
y2=10*sin(2*pi*f2*n) 
y3=10*sin(2*pi*f3*n) 
y=y1+y2+y3 
ny=length(y) 
N=2^nextpow2(ny) 
yfft=fft(y,N) 
yfft2=yfft(1:N/2) 
xfft=Fs*(0:N/2-1)/N 



%Plots 
subplot(3,3,1); plot(n,y1,'b'); title('Sinwave 1'); 
subplot(3,3,2); plot(n,y2); title('Sinwave2'); 
subplot(3,3,3); plot(n,y3); title('Sinwave3'); 
subplot(3,3,[4 5 6]); plot(n,y); 
title('Time domain signal (sum of all sin waves)'); 
subplot(3,3,[7 8 9]); plot(xfft,abs(yfft2)/max(abs(yfft2))); 
title('Frequency domain Signal');  
grid on; 
 

Adding noise to an image: 
 
clc 
Clear 
image=imread('img1.jpg'); image=rgb2gray(image); 
noise=6+25*randn(size(image)); subplot(1,3,1); 
imshow(image); subplot(1,3,2); 
imshow(uint8(noise)); 
noisy_image=uint8(double(image)+noise); subplot(1,3,3); 
imshow(noisy_image); 

 
Results: 
 

As Continuous Time Plot: 
 
 Sine Wave: 

 

 Cosine Wave: 
 



 
 
 Sinc Wave: 

 

 
 
 
As Discrete Time Stem: 
 

 Sine Wave: 
 

 

 Cosine Wave: 



 

 
 
 Sinc Wave: 

 

 
 

 Unit Impulse Signal: 
 

 
 Unit Step Signal: 

 



 
 

 Unit Ramp Signal: 
 

 
 

 Exponential Signal: 
 

 
 

 Noise: 



 

 
 

Conclusion: 

In conclusion, the ability to represent and plot basic signals such as sine, cosine, sinc, unit 
impulse, unit step, unit ramp, and exponential signals in MATLAB is fundamental to 
understanding and analyzing systems in Digital Signal Processing (DSP). Moreover, 
generating noise signals in MATLAB is essential for simulating real-world scenarios and 
studying the effects of randomness and disturbances on signal integrity. This knowledge serves 
as a cornerstone for further exploration and application in various engineering and technology 
fields. 

 

 

 

 

 
  



Experiment No.: 03 

Experiment Name: Analog Signal to Digital Signal Conversion. 

Objectives: 

 To understand the analog-to-digital conversion process: Sampling, Quantization and 
Coding. 

 To convert continuous time signal into digital signal using MATLAB code. 
 To analyze the effect of sampling rate and quantization level in A/D 

conversion. 
 

Required Apparatus: 

 MATLAB Software. 
 

Theory:  
 

An analog signal is a continuous signal that represents variations in a physical quantity, such 
as sound or light, and can vary infinitely within a certain range. It’s often used in contrast to a 
digital signal, which is discrete and represents information in binary form. 
 

Analog Signals to Digital Signals conversion is Essential for several reasons: 
 

• Improved Performance: Digital signals are less susceptible to noise and distortion, 
leading to clearer and more accurate communication. 

• Power Efficiency: Digital systems generally use less power than their analog 
counterparts. 

• Ease of Encryption: Digital signals can be encrypted more easily, enhancing security 
during transmission. 

• Simpler Storage: Digital data can be stored more compactly and is less prone to 
degradation over time. 

• Processing Capabilities: Digital signals can be processed and manipulated using 
algorithms for tasks like filtering, compression, and error correction. 

• Transmission: Digital signals can be transmitted over long distances without 
significant loss of quality. 

There are three steps for converting an analog signal to digital. 
• Sampling: Converts Continuous Time (CT) signal into Discrete Time (DT) Signal. 
• Quantization: Converts continuous-valued signal into discrete-valued signal. 
• Coding: Converts discrete value into Binary Code. 

 
Code: 
clc 
clear 
Fs= 1200;                               % Vary the value of 
Fs=150,400,1200,1600,3000,5000 
bit=3;                                      % Vary the value of 
bit=2,3,4,8,16 
dt= 1/Fs; StopTime= 0.025; 
t=0:0.00001:StopTime; n=0:1:(StopTime/dt); Fc =100; 



Ya=5*sin(2*pi*Fc*t)+3*cos(2*pi*6*Fc*t); 
y_max=max(Ya); y_min=min(Ya); 
y = 5*sin(2*pi*(Fc/Fs)*n)+3*cos(2*pi*6*(Fc/Fs)*n); 
ns=length(y); q_out=zeros(1,ns); 
del=(y_max-y_min)/(2^bit); 
low=y_min+(del/2); high=y_max-(del/2); 
for h=low:del:high 

for b=1:ns 
if(((h-del/2)<y(b)) && ((y(b)<=(h+del/2)))) 

q_out(b)=h; 
end 

end 
end 
q_error=q_out-y; r_memory=bit*ns; 
fprintf('Required memory: %d bit',r_memory); 
%Plot 
subplot(321); plot(t,Ya,'r','Linewidth',1); 
xlabel('Time'); ylabel('amplitude'); title('Analog Signal'); 
subplot(322); stem(n,y,'c','Linewidth',1); 
xlabel('sample number'); ylabel('amplitude'); 
title('Discrete Time Continuous Valued Signal'); 
subplot(323); stem(n,q_out,'m','Linewidth',1); 
xlabel('Sample number'); ylabel('amplitude'); 
title('Discrete Time Discrete Valued Signal'); 
subplot(324); plot(n,q_error,'b','Linewidth',1); 
xlabel('Sample Number'); ylabel('amplitude'); 
title('Quantization Noise'); 
subplot(3,2,5); plot(n.*dt,q_out,'g','Linewidth',1); 
xlabel('Time'); ylabel('amplitude');  
title('Reconstructed Analog Signal'); 
subplot(3,2,6); plot(t,Ya,'r',n.*dt,q_out,'g','Linewidth',1); 
xlabel('Time'); ylabel('amplitude');  
title('Recosntructed Analog Signal Vs Analog Signal');  
hold on; 
 

Result: 
 

 For, 
Fs = 150; 
Bit = 2; 

 
Command Window: 
 

 
 

Figure: 



 
 

 For, 
Fs = 400; 
Bit = 3; 

 
 Command Window: 

 
  
Figure: 

 
 
 

 For, 
Fs = 1200; 
Bit = 4; 

 
Command Window: 
 

 
Figure: 



 
 For, 

Fs = 1600; 
Bit = 8; 

 
Command Window: 
 

 
 
Figure:  
 

 
 

 For, 
Fs = 3000; 
Bit = 16; 

 
Command Window: 
 



 
Figure: 

 
 For, 

Fs = 5000; 
Bit = 16; 

 
Command Window: 
 

 
 
 
 

Figure: 

 
 

 
 



Conclusion:  
 

The exploration of the analog-to-digital conversion process, including sampling, quantization, 
and coding, is a pivotal aspect of modern signal processing. Through MATLAB coding 
exercises, we’ve gained practical experience in converting continuous-time signals into their 
digital counterparts. Additionally, we’ve observed firsthand the impact of varying sampling 
rates and quantization levels on the fidelity of A/D conversion. This understanding is crucial 
for designing efficient digital systems that accurately represent real-world analog signals, 
ensuring high-quality signal reconstruction and reliable data transmission in various 
applications. 
  



Experiment No.: 04 

Experiment Name: Manipulation of Discrete-Time (DT) signals. 

Objectives: 

 To develop MATLAB program to add/subtract/multiply two discrete time sequences. 
 To develop function to shift and fold the DT sequence. 
 To develop the function to find the symmetric (even) and anti-symmetric (odd) part of 

DT signal. 
 

Required Apparatus: 

 MATLAB Software. 

Theory: 

1. Addition/Subtraction/Multiplication of two Discrete-Time Sequences: 
 

Operations on discrete-time sequences are performed element-wise. 
 

 Addition: The addition of two signals is the process of combining them by adding their 
corresponding amplitudes at each point in time or sample index. 
Equation: z[n] = x[n] + y[n] 
 

 Subtraction: The subtraction of two signals involves calculating the difference between 
their corresponding amplitudes at each point in time or sample index. 
Equation: z[n] = x[n] - y[n] 
 

 Multiplication: The subtraction of two signals involves calculating the difference between 
their corresponding amplitudes at each point in time or sample index. 
Equation: z[n] = x[n] .* y[n] 
 

These operations require the sequences to be of the same length or appropriately padded 
 

2. Shifting and Folding Discrete-Time Sequences: 
 

Shifting involves moving the sequence in time. 
 

 Right Shift: The right shift of a signal refers to delaying the signal in time. In discrete-
time signal processing, it means that each sample of the signal is moved to the right by a 
certain number of sample intervals. 
Equation:  y[n] = x[n-k] 
Here; 
k= Samples of delay. 
 

 Left Shift: The right shift of a signal refers to advancing the signal in time. In discrete-
time signal processing, it means that each sample of the signal is moved to the left by a 
certain number of sample intervals. 
Equation:  y[n] = x[n+k] 
Here; 



k= Samples of advance. 
 

 Folding: Folding, or time-reversal, is an operation in signal processing where a signal is 
flipped around the vertical axis. It mirrors the original signal. 
Equation: y[n] = x[-n] 
 

Shifting and Folding are used to analyze system properties like time-invariance. 
 

 

3. Symmetric (Even) and Anti-Symmetric (Odd) Parts of a Discrete-Time Signal: 
 

Any discrete-time signal can be decomposed into symmetric and anti-symmetric parts. 
 

 Even Symmetric: Even symmetric signals are those that are identical to their mirror image 
about the vertical axis, like a cosine wave. 
Equation: x(t) = x(-t) 
 

 Odd Symmetric: Odd symmetric signals are antisymmetric about the vertical axis, like a 
sine wave. 
Equation: x(t) = -x(-t) 
 

This decomposition is useful for analyzing signals and systems, especially in the context of 
Fourier series and transforms. 

 
 
 

Code: 

1.  Addition/Subtraction/Multiplication of two Discrete-Time Sequences: 
 

 Addition: 

Function 

function [y,n]=sigadd(x1,n1,x2,n2) 
n=min(min(n1),min(n2)):max(max(n1),max(n2)); 
y1=zeros(1,length(n)); 
y2=y1; y1((n>=min(n1))&(n<=max(n1)))=x1; 
y2((n>=min(n2))&(n<=max(n2)))=x2; y=y1+y2; 

Script 

clc 
clear 
x1=input('x1(n):'); 
n11=input('Starting point of x1(n):'); 
n1=n11:n11+length(x1)-1; 
x2=input('x2(n):'); 
n22=input('Starting point of x2(n):'); 
n2=n22:n22+length(x2)-1; 
[y,n]=sigadd(x1,n1,x2,n2); 
subplot(311); 
stem(n1,x1); 
title('Signal x1(n1)'); 
subplot(312); 
stem(n2,x2); 
title('Signal x2(n2)'); 
subplot(313); 



stem(n,y); 
title('Signal y(n)=x1(n) + x2(n)'); 
 
 

 
 Subtraction: 

Function 

function [y,n]=sigsub(x1,n1,x2,n2) 
n=min(min(n1),min(n2)):max(max(n1),max(n2)); 
y1=zeros(1,length(n)); 
y2=y1; y1((n>=min(n1))&(n<=max(n1)))=x1; 
y2((n>=min(n2))&(n<=max(n2)))=x2; y=y1+y2; 
 

Script 

n1=-3:2; 
x1=[1,5,4,3,7,0]; 
n2=-5:5; 
x2=[0 1 2 3 3 9 8 5 5 4 4]; 
[y,n]=sigsub(x1,n1,x2,n2); 
subplot(311); 
stem(n1,x1); 
title('Signal x1(n1)'); 
subplot(312); 
stem(n2,x2); 
title('Signal x2(n2)'); 
subplot(313); 
stem(n,y); 
title('Signal y(n)=x1(n) - x2(n)'); 
 
 

 Multiplication: 
clc 
clear 
% Define two discrete-time signals 
n = 0:10;                                         % Sample index from 0 to 10 
signal1 = sin(2*pi*0.1*n);             % A sine wave with frequency of 0.1 Hz 
signal2 = cos(2*pi*0.1*n);            % A cosine wave with frequency of 0.1 Hz 
 

% Subtract the two signals 
subtractedSignal = signal1 - signal2; 
 

% Plot the original signals and the subtracted signal figure; 
subplot(3,1,1); 
stem(n, signal1, 'filled'); 
title('Signal 1 : Sine Wave'); 
 

subplot(3,1,2); 
stem(n, signal2, 'filled'); 



title('Signal 2 : Cosine Wave'); 
 

subplot(3,1,3); 
stem(n, subtractedSignal, 'filled', 'r'); 
title('Subtracted Signal : Signal 1 - Signal 2'); 
xlabel('Sample Index'); 
ylabel('Amplitude'); 
 

2. Shifting and Folding Discrete-Time Sequences: 
 

 Shift: 

Function: 

function [y,n]=sigshift(x,m,k) 
%implement y(n)=x(n-k) 
n=m+k; 
y=x; 
 
Script: 

Clc 
clear 
x1=input(‘x(n):’) 
n1=input(‘Starting point of x(n)’) 
n=n1:n1+length(x1)-1; 
[y1,n11]=sigshift(x1,n,-5); 
[y2,n22]=sigshift(x1,n,3); 
subplot(311); 
stem(n1,x1); 
title('Signal x1(n1)'); 
subplot(312); 
stem(n11,y1); 
title('Left shift of x1(n1)'); 
subplot(313); 
stem(n22,y2); 
title('Right shift of x1(n1)'); 

 
 Folding: 

Function: 

function [y,n]=sigfold(x,m) 
% imlementation of y(n)=x(-n)  
y=fliplr(x);  
n=-fliplr(m);  
 
Script: 
clc 
clear 
x1=input(‘x(n):’) 



n1=input(‘Starting point of x(n)’) 
n=n1:n1+length(x1)-1; 
[y,n]=sigfold(x2,n2); 
subplot(211); 
stem(n2,x2); 
title('Signal x2(n2)'); 
subplot(212); 
stem(n,y); 
title('Signal y=x2(-n2)'); 

 

3. Symmetric (Even) and Anti-Symmetric (Odd) Parts of a Discrete-Time Signal: 
 

Function: 

function [xe,ne,xo,no]=even_odd(x,n)  
[X,N]=sigfold(x,n); 
[xe,ne]=sigadd(x,n,X,N);  
xe=0.5*xe; 
[xo,no]=sigsub(x,n,X,N);  
xo=0.5*xo; 
 

Script: 

clc 
clear 
x1=input(‘x(n):’) 
n1=input(‘Starting point of x(n)’) 
n=n1:n1+length(x1)-1; 
[xe,ne,xo,no]=even_odd(x,n); 
subplot(2,2,[1 2]); 
stem(n,x); 
title('Original Signal'); 
subplot(2,2,3); 
stem(ne,xe); 
title('Even Component'); 
subplot(2,2,4); 
stem(no,xo); 
title('Odd Component'); 

 

 
Result: 

 

1. Addition/Subtraction/Multiplication of two Discrete-Time Sequences: 
 

 Addition: 



 
 

 Subtraction: 

 
 

 
 

 Multiplication: 

 

 

2. Shifting and Folding Discrete-Time Sequences: 
 

 Right Shift: 



 
 

 

 Left Shift:  

 
 

 Folding:  

 

 

3. Symmetric (Even) and Anti-Symmetric (Odd) Parts of a Discrete-Time Signal: 
 

 Even Symmetric: 



 
 
 

 

 Odd Symmetric: 

 

 

Conclusion: 
The development of MATLAB programs to perform arithmetic operations on DT sequences 
such as addition, subtraction, and multiplication allows for the manipulation and analysis of 
signals in various applications. The ability to shift and fold DT sequences further extends this 
capability, enabling the examination of signal properties in different time frames and 
orientations. Moreover, the functions to extract symmetric (even) and anti-symmetric (odd) 
parts of a DT signal are crucial for understanding the inherent characteristics of signals, which 
can be pivotal in areas like system analysis and filter design. These operations form the building 
blocks for more complex signal processing tasks and are instrumental in the field of digital 
signal processing. 
  



Experiment No.: 05 

Experiment Name: Convolution and Correlation of Discrete-Time sequences. 

Objectives: 

 To develop MATLAB program to find the convolution sum of two discrete-time 
sequence. 

 To develop program to calculate the correlation of two DT sequence. 
 Use of MATLAB built-in function to find the convolution and correlation sequence of two 

DT sequence. 
 To observe the application of correlation in active sonar application. 

 
Required Apparatus: 

 MATLAB Software. 
 

Theory: 

 Convolution: Convolution is a mathematical operation that combines two functions to 
produce a third function, which represents how the shape of one function is modified by the 
other. In the context of signal processing, it’s often used to apply filters to signals or to find 
the overlap between two signals. 
Equation: 

𝑦𝑦(𝑛𝑛) = � 𝑥𝑥
∞

𝑘𝑘=∞

(𝑘𝑘)ℎ(𝑛𝑛 − 𝑘𝑘) 

 

 Correlation: Correlation refers to the measure of similarity between two signals. It 
quantifies how much one signal resembles another over time. In signal processing, there are 
two main types of correlations; 

 

1. Cross-correlation: This measures the similarity between two different signals, often used 
to find the time delay between them or to match a known pattern within a signal. 
Equation:  

rxy = � 𝑥𝑥

∞

𝑛𝑛=−∞

(𝑛𝑛)𝑦𝑦(𝑛𝑛) 

  
2. Auto-correlation: This measures the similarity of a signal with a delayed version of itself, 

which can reveal repeating patterns, such as periodic signals, or identify the fundamental 
frequency of a signal1. 

    Equation:   

rxy = � 𝑥𝑥

∞

𝑛𝑛=−∞

(𝑛𝑛)𝑥𝑥(𝑛𝑛) 

Both types of correlation can provide valuable insights into the characteristics and behavior of 
signals in various applications, such as communications, radar, and audio processing. 



Code: 
 

 Convolution: 
clc; 
clear 
x=input('Input Sequence x(n):'); 
nl= input('Input Starting Point of x(n):'); 
h=input('Input Sequence h(n):'); 
ml= input('Input Starting Point h(n):'); 
n=nl:nl+length(x)-1; 
m=ml:ml+length(h)-1; 
ny=(min(n) + min(m)) : (max(n) + max(m)); 
y=conv(x,h); % Built in Function for Convolution 
disp('convolution of sequence x(n) & h(n):'); 
disp(y); 
 

% Plot 
subplot(311); stem(n,x,'b'); 
title('Signal x(n)'); grid on; xlabel('n'); ylabel('x(n)'); 
subplot(312); stem(m,h,'g'); 
title('Signal y(n)'); grid on; xlabel('n'); ylabel('h(n)'); 
subplot(313); stem(ny,y,'m'); 
title('Convolution'); 
grid on; xlabel('n'); ylabel('x(n)*h(n)'); 
 

 Deconvolution: 
 

 Cross-Correlation: 
clc; 
clear; 
n=0:6; 
x=[0.1 0.2 -0.1 4.1 -2 1.5 -0.1]; 
m=0:6; 
y=[0.1 4 -2.2 1.6 0.1 0.1 0.2]; 
[Y,N]=xcorr(x,y) 
subplot(311); stem(n,x); 
title('Signal x(n)'); 
subplot(312); stem(m,y); 
title('Signal y(n)'); 
subplot(313); stem(N,Y/max(Y)); 
title('Normalized Crosscorrelation of sequence x(n)and y(n)'); 

 
 Auto-Correlation: 
clc; 
clear; 
n = 0:6; 
x = [0.1 0.2 -0.1 4.1 -2 1.5 -0.1]; 



[Rxx, lags] = xcorr(x, 'biased'); 
subplot(211); 
stem(n, x); % Plot the original signal x(n) 
title('Signal x(n)'); 
subplot(212); stem(lags, Rxx, 'm'); 

     title('Auto-Correlation of sequence x(n)'); 

Result: 
 

 Convolution: 
 

Command Window: 
 

 

Figure: 

 

 
 Cross-Correlation: 

 



 
 

 Auto-Correlation: 

 

 
Conclusion: 
 

Creating MATLAB programs for the convolution and correlation of signals is essential for 
signal processing. Convolution reveals the output response of systems to signals, while 
correlation assesses signal similarities, crucial in applications like active sonar. MATLAB’s 
conv and xcorr functions facilitate these computations, aiding in tasks such as target detection 
in sonar. These operations underscore the practicality of signal processing in technological 
advancements and automation in MATLAB enhances this further.  



𝑋𝑋(𝑧𝑧) = � 𝑥𝑥[𝑛𝑛] ⋅ 𝑧𝑧−𝑛𝑛∞
𝑛𝑛=−∞   

 

Experiment No.: 06 

Experiment Name: Z-Transform & Inverse Z-Transform using MATLAB. 

Objectives: 
 

 To realize the significance of z-transform. 
 To determine the z-transform and inverse z-transform of discrete time signal and systems in 

MATLAB. 
 To find the pole-zero plot and impulse response of DT system. 
 To implement moving average filter by z-transform. 

 
Required Apparatus: 

 MATLAB Software. 
 

Theory: 

 Z -Transform: The Z-transform is a mathematical technique used in signal processing and 
control theory to analyze discrete-time signals. It transforms a discrete-time signal, which is 
a sequence of real or complex numbers, into a complex frequency-domain representation, 
known as the Z-domain or Z-plane. 
Equation:  
 
 

 

 Inverse Z -Transform: The inverse Z-transform is a mathematical process used to 
determine the original discrete-time signal from its Z-transform representation. It essentially 
reverses the Z-transform operation, converting a function in the Z-domain back into its time-
domain sequence. 
Equation:  

 

𝑥𝑥[𝑛𝑛] = 𝑍𝑍−1{𝑋𝑋(𝑧𝑧)}  
 
  
Code: 

 Z – Transform: 
clc 
clear 
syms z 
x=input('Input Sequence:'); 
n= input('Input Starting Point:'); 
n1= length(x) + n - 1; 
m=1; 
result=0; 
for i= n:n1 
result= result + x(m)*z^(-i); 
m=m+1; 
end 



disp('X(Z):') 
disp(result) 
 
 

 

 Inverse Z – Transform: 
clc 
clear 
syms z 
Fz= input('Input Function X(Z):'); 
Iz=iztrans(Fz); 
disp('Inverse Z-transform x(n):'); 
disp(Iz); 
 

 
Result: 
 

 Z - Transform: 

 

 Inverse Z - Transform: 

 
 

Conclusion: 
 

The z-transform is essential in digital signal processing for system analysis and filter design, 
offering a complex frequency domain perspective of discrete-time signals. Utilized in 
MATLAB through ztrans and iztrans, it facilitates the examination of system dynamics and 
stability. The pole-zero plots and impulse response, derived from the system’s transfer 
function, are instrumental in assessing system behavior. Additionally, the z-transform aids in 
implementing filters like the moving average, which smoothens data by attenuating high-
frequency components. 



Experiment No.: 07 

Experiment Name: Frequency domain analysis of Discrete time Signal. 

Objectives: 

 To understand the mathematics of transforming a signal from time domain to frequency 
domain. 

 To transform a signal from time domain to frequency domain by DFT in MATLAB. 
 To transform a signal from time domain to frequency domain by FFT in MATLAB. 
 
Required Apparatus: 

 MATLAB Software. 
 

Theory: 

 DFT: The Discrete Fourier Transform (DFT) is a fundamental tool in Digital Signal 
Processing (DSP). It is used to analyze the frequency content of discrete signals and to 
perform operations such as filtering and spectrum analysis. The DFT converts a finite 
sequence of equally-spaced samples of a function into a same-length sequence of equally-
spaced samples of the discrete-time Fourier transform (DTFT), which is a frequency-domain 
representation. 

    Equation: 
 

𝑋𝑋[𝑘𝑘] = � 𝑥𝑥[𝑛𝑛] ⋅ 𝑒𝑒−
𝑗𝑗2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0
  

 

Where; 
 X[k] = value of the DFT at index - k , 
 x[n] = nth sample of the input signal, 
 N = total number of samples, 
 e = base of the natural logarithm, 
 j = imaginary unit. 
 

 
 FFT: The Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier 

Transform (DFT) of a sequence, or its inverse, much more rapidly than possible by direct 
calculation. Essentially, it transforms a signal from its original domain (often time or space) 
into a representation in the frequency domain and vice versa1. The FFT is widely used in 
engineering, music, science, and mathematics for its efficiency in analyzing the frequency 
components of signals. 

 
 

Code: 
 

 DFT: 
clc; 
clear 
T=0.005; 



t=0:T:1; Fs=1/T; 
x=sin(2*pi*50*t); 
N=length(x); 
E=exp(-1i*2*pi/N); 
TM=zeros(N,N); 
for k= 1:N 
for n=1:N 
TM(n,k)=E^((n-1)*(k-1)); 
end 
end 
dft=x*TM; 
subplot(211); plot(t,x); title ('Time Domain Signal'); 
xlabel('Time'); 
ylabel('Amplitude'); 
subplot(212); plot((0:N-1)*(Fs/N),abs(dft), 'g'); title ('Frequency Domain Signal'); 
xlabel('Frequency'); 
ylabel('Amplitude'); 

 
 FFT: 

clc 
clear 
Fs=1000;                                                                   % sampling frequency 
Ts=1/Fs;                                                                    % sampling period or time step 
n=0:Ts:1-Ts;                                                              %signal duration 
f1=9; f2=39; f3=25;                                                   % Frequency of the three Sine Signals 
y1=10*sin(2*pi*f1*n); y2=10*sin(2*pi*f2*n); 
y3=10*sin(2*pi*f3*n); y=y1+y2+y3; 
ny=length(y); N=2^nextpow2(ny); 
yfft=fft(y,N); yfft2=yfft(1:N/2); 
xfft=Fs*(0:N/2-1)/N; 
 

%Plots 
subplot(3,3,1); plot(n,y1,'b'); title('Sinwave 1'); 
subplot(3,3,2); plot(n,y2); title('Sinwave2'); 
subplot(3,3,3); plot(n,y3); title('Sinwave3'); 
subplot(3,3,[4 5 6]); plot(n,y, 'r'); 
title('Time domain signal (sum of all sin waves)'); 
subplot(3,3,[7 8 9]); plot(xfft,abs(yfft2)/max(abs(yfft2)),'k'); 
title('Frequency domain Signal');  
grid on; 

 
 
 
 
 
 
 



Result: 
 

 DFT: 

 
 

 
 FFT: 

 
 
Conclusion:  
 

The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) are essential in 
digital signal processing for transforming signals from the time domain to the frequency 
domain. Using MATLAB for DFT and FFT allows for practical application and exploration of 
these concepts. DFT helps analyze discrete signal frequency components, crucial for audio and 
image processing, while FFT reduces computational complexity, enabling real-time processing 
of large datasets. 
 

  



Experiment No.: 08 

Experiment Name: Design of Finite Impulse Response (FIR) Filter 

Objectives: 

 To understand the impact of window function in FIR filter design. 
 To understand the conversion of high pass filter kernel from low pass filter kernel. 
 To design of band pass and band stop filter. 
 To understand the use of FIR filter in signal separation. 

 
Required Apparatus: 

 MATLAB Software. 

Theory 

Finite Impulse Response (FIR) filters are a type of digital filter characterized by a finite-
duration impulse response. They are widely used due to their inherent stability and linear 
phase response. 

1. Lowpass Filter: Passes frequencies below the cutoff frequency and attenuates higher 
frequencies. 

2. High-pass Filter: Passes frequencies above the cutoff frequency and attenuates lower 
frequencies. 

• Achieved using spectral inversion of the lowpass filter. 

3. Bandpass Filter: Passes frequencies between two cutoff frequencies. 

• Achieved by convolving high-pass and lowpass filters. 

4. Band-stop Filter: Stops frequencies between two cutoff frequencies while passing the 
rest. 

• Achieved by summing high-pass and lowpass filters. 

A Blackman window was used to smooth the frequency response, reducing side lobes in the 
frequency domain. 

Algorithm: 

The process of designing each filter is described below: 

1. Lowpass Filter 

1. Define the filter order M and normalized cutoff frequency ncf. 

2. Compute the ideal impulse response using the sinc function. 

3. Apply the Blackman window to the ideal response. 

2. High-pass Filter 



1. Call the lowpass filter function with the same parameters. 

2. Apply spectral inversion: 

• Invert all coefficients of the lowpass filter. 

• Add 1 to the center coefficient if the filter length is odd. 

3. Bandpass Filter 

1. Generate a high-pass filter with a lower cutoff frequency ncf1. 

2. Generate a lowpass filter with an upper cutoff frequency ncf2. 

3. Convolve the high-pass and lowpass filters. 

4. Truncate or adjust the length of the resulting filter. 

4. Band-stop Filter 

1. Generate a high-pass filter with an upper cutoff frequency ncf2. 

2. Generate a lowpass filter with a lower cutoff frequency ncf1. 

3. Ensure both filters have the same length by truncating if necessary. 

4. Sum the high-pass and lowpass filters. 

 

Code: 
 
clc 
clear 
M=input('Define the length of filter kernel:'); 
n=0:1:M-1; 
wc=0.5*pi; 
hd=sin(wc*(n-(M-1)./2))./(pi*(n-(M-1)./2)); 
if(rem(M,2)~=0) 
    hd(((M-1)/2)+1)=wc/pi;  
end 
w_blackman=0.42-0.5*cos((2*pi*n)./(M-1))+0.08*cos((4*pi*n)./(M-1));  
w_hamming=0.54-(0.46*cos((2*pi*n)./(M-1)));  
w_hanning=hanning(M)'; 
w_bartlett=bartlett(M)';  
h_blackman=hd.*w_blackman;  
h_hamming=hd.*w_hamming;  
h_bartlett= hd.*w_bartlett; 
h_hanning= hd.*w_hanning; 
plot(n,w_blackman,n,w_hamming,n,w_hanning,n,w_bartlett,'Linewidth',1.25);  
title('Shapes of different window'); 
legend('Blackman Window','HammingWindow','HanningWindow','Bartlett Window');  
fvtool(h_blackman,1,h_hamming,1,h_bartlett,1,h_hanning,1); 
legend('Blackman Window','HammingWindow','Bartlett Window','HanningWindow'); 
 
 
Lowpass Filter: 



function h = fir_lowpass(ncf, M) 
    
n = 0:1:M-1;                 % Time index 
wc = 2*pi*ncf;               % Normalized cutoff angular frequency 
hd = sin(wc*(n-(M-1)./2))./(pi*(n-(M-1)./2)); % Ideal impulse response    
if(rem(M,2)~=0) 
    hd(((M-1)/2)+1)=wc/pi;   % Handle division by zero for the center tap 
end     
% Blackman window 
w_blackman = 0.42-0.5*cos((2*pi*n)./(M-1))+0.08*cos((4*pi*n)./(M-1)); 
h = hd.*w_blackman;          % Apply the window 
end 
 

Highpass Filter: 
function h=fir_highpass(ncf,M)  
 
if (rem(M,2)==0) 
    M=M+1; 
end 
% Generate the lowpass filter 
h_low = fir_lowpass(ncf, M); 
     
% Apply spectral inversion 
h = -h_low;                        % Invert all coefficients 
h((M-1)/2 + 1) = h((M-1)/2 + 1) + 1; % Add 1 to the center tap 
end 
 
Bandpass Filter: 
 
function h = fir_bandpass(ncf1, ncf2, M) 
    
% Generate the highpass and lowpass filters 
h_high = fir_highpass(ncf1, M); 
h_low = fir_lowpass(ncf2, M); 
     
% Convolve the filters to create a bandpass filter 
h = conv(h_high, h_low); 
end 
 
Bandstop Filter: 
 
function h = fir_bandstop(ncf1, ncf2, M) 
 
% Generate the highpass and lowpass filters 
h_high = fir_highpass(ncf2, M); 
h_low = fir_lowpass(ncf1, M); 
% Ensure both filters have the same length 
len_low = length(h_low); 
len_high = length(h_high); 
     
if len_low > len_high 
    h_low = h_low(1:len_high);  % Truncate lowpass filter 
elseif len_high > len_low 
    h_high = h_high(1:len_low); % Truncate highpass filter 
end 
    % Add the filters to create a bandstop filter 



    h = h_high + h_low; 
end 
 

Comparison of Different types of Filters: 
clc 
clear 
 
%Generation of Raw Signal 
Fs=500; % sampling frequency 
Ts=1/Fs; % sampling period or time step 
t=0:Ts:1-Ts; %signal duration 
f1=20; f2=70; f3=90; 
y1=10*sin(2*pi*f1*t); y2=10*sin(2*pi*f2*t); y3=10*sin(2*pi*f3*t);  
y=y1+y2+y3;  
subplot(321); plot(t,y,'r'); title('Noisy Signal'); 
 
%Frequency domain representation of raw signal 
N_rs=length(y); 
N_rs=2^nextpow2(N_rs);  
fc_rs=fft(y,N_rs);  
fc_rs=fc_rs(1:N_rs/2); 
f_rs=Fs*(0:N_rs/2-1)/N_rs; 
subplot(322); plot(f_rs,abs(fc_rs),'r'); 
title('Noisy signal in frequency domain'); 
%Filter Design 
cut_off1=65/Fs; cut_off2=75/Fs; order=256; 
 
%h=fir_lowpass(cut_off1,order); 
%h=fir_highpass(cut_off2,order); 
%h=fir_bandpass(cut_off1,cut_off2,order); 
h=fir_bandstop(cut_off1,cut_off2,order); 
 
%Plot 
subplot(323); stem(h); 
title('Filter impulse response'); 
subplot(324); 
[f_h,w]=freqz(h);  
plot((w/(2*pi))*Fs,abs(f_h),'linewidth',1.2); 
title('Filter frequency response'); 
%Signal Filtering 
filtered_sig=conv(y,h);  
subplot(325); plot(filtered_sig,'g'); 
title('Filtered signal'); 
%Frequency domain representation of filtered signal 
N_fs=length(filtered_sig); N_fs=2^nextpow2(N_fs); 
fc_fs=fft(filtered_sig,N_fs); fc_fs=fc_fs(1:N_fs/2); 
f_fs=Fs*(0:N_fs/2-1)/N_fs; 
subplot(326); plot(f_fs,abs(fc_fs),'g'); 
title('Filtered signal in frequency domain'); 
 
 

Figure: 

 



 

 

 
Results 

The frequency responses for each filter were analyzed and observed as per expectations: 
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• Lowpass Filter: Frequencies below the cutoff frequency were passed. 
• High-pass Filter: Frequencies above the cutoff frequency were passed. 
• Bandpass Filter: Frequencies between the two cutoff frequencies were passed. 
• Band-stop Filter: Frequencies between the two cutoff frequencies were attenuated. 

 
Conclusion: 

1. The FIR filters for lowpass, high-pass, bandpass, and band-stop were successfully 
implemented using MATLAB. 

2. Spectral inversion and convolution techniques were effective for high-pass and 
bandpass filters. 

3. The Blackman window provided a smooth transition and reduced side lobes in the 
frequency response. 
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